Axial vibrations of brass wind instrument bells and their acoustical influence: Experiments.
نویسندگان
چکیده
It has recently been proposed that the effects of structural vibrations on the radiated sound of brass wind instruments may be attributable to axial modes of vibration with mode shapes that contain no radial nodes [Kausel, Chatziioannou, Moore, Gorman, and Rokni, J. Acoust. Soc. Am. 137, 3149-3162 (2015)]. Results of experiments are reported that support this theory. Mechanical measurements of a trumpet bell demonstrate that these axial modes do exist in brass wind instruments. The quality factor of the mechanical resonances can be on the order of 10 or less, making them broad enough to encompass the frequency range of previously reported effects attributed to bell vibrations. Measurements of the input impedance show that damping bell vibrations can result in impedance changes of up to 5%, in agreement with theory. Measurements of the acoustic transfer function demonstrate that the axial vibrations couple to the internal sound field as proposed, resulting in changes in the transfer function of approximately 1 dB. In agreement with theory, a change in the sign of the effect is observed at the frequency of the structural resonance.
منابع مشابه
Axial vibrations of brass wind instrument bells and their acoustical influence: Theory and simulations.
Previous work has demonstrated that structural vibrations of brass wind instruments can audibly affect the radiated sound. Furthermore, these broadband effects are not explainable by assuming perfect coincidence of the frequency of elliptical structural modes with air column resonances. In this work a mechanism is proposed that has the potential to explain the broadband influences of structural...
متن کاملComparisons between models and measurements of the input impedance of brass instruments bells
This work is part of a project aiming at helping craftsmen to design and characterize their musical instruments. Starting from a given wind instrument shape, our objective consists in choosing the most relevant physical model able to predict the acoustical input impedance of this musical instrument once constructed. The modeling of bells in brass instruments is still problematic as the limits o...
متن کاملModelling the Wall Vibrations of Brass Wind Instruments
The vibration of the walls of brass wind instruments has been a subject of study in the field of musical acoustics throughout the last decades. The amplitude of such vibrations, stimulated by the oscillating air pressure inside the instrument bore, is very small compared to the dimensions of the instrument. However, it has been recently shown that at the flaring regions of the bell of brass ins...
متن کاملInfluence of wall vibrations on the behavior of a simplified wind instrument.
The issue of the influence of wall vibrations on the behavior of wind instruments is still under debate. The mechanisms of vibroacoustic couplings involved in these vibrations are difficult to investigate, as fluid-structure interactions are weak. Among these vibroacoustic interactions, the present study is focused on the coupling between the internal acoustic field and the mechanical behavior ...
متن کاملInfluence of wall vibrations on the sound of brass wind instruments.
The results of an experimental and theoretical investigation of the influence of wall vibrations on the sound of brass wind instruments are presented. Measurements of the transmission function and input impedance of a trumpet, with the bell both heavily damped and freely vibrating, are shown to be consistent with a theory that assumes that the internal pressure causes an oscillation of the diam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of the Acoustical Society of America
دوره 138 2 شماره
صفحات -
تاریخ انتشار 2015